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Relevance of chaos in numerical solutions of quantum billiards
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In this paper we have tested several general numerical methods in solving the quantum billiards, such as the
boundary integral method~BIM ! and the plane-wave decomposition method~PWDM!. We performed exten-
sive numerical investigations of these two methods in a variety of quantum billiards: integrable systems
~circles, rectangles, and segments of a circular annulus!, Kolmogorov-Arnold-Moser systems~Robnik bil-
liards!, and fully chaotic systems~ergodic, such as a Bunimovich stadium, Sinai billiard, and cardiod billiard!.
We have analyzed the scaling of the average absolute value of the systematic errorDE of the eigenenergy in
units of the mean level spacing with the density of discretizationb ~which is the number of numerical nodes
on the boundary within one de Broglie wavelength! and its relationship with the geometry and the classical
dynamics. In contradistinction to the BIM, we find that in the PWDM the classical chaos is definitely relevant
for the numerical accuracy at a fixed density of discretizationb. We present evidence that it is not only the
ergodicity that matters, but also the Lyapunov exponents and Kolmogorov entropy. We believe that this
phenomenon is one manifestation of quantum chaos.@S0163-1829~98!05604-5#

PACS number~s!: 05.45.1b, 02.70.Rw, 03.65.Ge
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I. INTRODUCTION

It is quite embarrassing to realize that in an attempt
numerically solve the Helmholtz equation

¹ r
2c~r !1k2c~r !50, ~1!

satisfied by the scalar solutionc(r ) with eigenenergyE5k2

inside a connected plane domainB with the Dirichlet bound-
ary conditionc(r )50 on the boundary]B, one can face
enormous difficulties in cases of ‘‘problematic’’ geometri
such as various nonconvex shapes. This is precisely
problem of solving and describing the quantum billiardB as
a Hamiltonian dynamical system, which is thus just the tw
dimensional Schro¨dinger problem for a free point particl
moving inside the enclosure]B, described by the wave func
tion c(r ) with the eigenenergyE5k2. The corresponding
classical problem is the classical dynamics of a freely m
ing point particle obeying the law of specular reflection up
hitting the boundary]B. Quantum billiards and their corre
spondence to their classical counterparts, especially in
semiclassical level, are important model systems in stu
of quantum chaos@1–3#. There are severalgeneralmethods
for a numerical solution of Eq.~1! such as the boundar
integral method~BIM ! ~see, e.g.,@4–6#! and the plane-wave
decomposition method~PWDM!, introduced and advocate
by Heller @7#, whose analysis, especially in the light of th
relevance of classical chaos, is the subject of our pre
paper. Another quite general method is the conformal m
ping diagonalization technique introduced by Robnik@8# and
further developed by Berry and Robnik@9#, Prosen and Rob
nik @10#, and Bohigaset al. @11#, which in principle should
work for any shape, whereas, in practice, it is used for sha
for which the conformal mapping onto the unit disk~or some
other integrable geometries admitting a simple basis for
representation! is sufficiently simple~possibly also analytic!.
571063-651X/98/57~4!/4095~11!/$15.00
o

he

-

-

he
es

nt
p-

es

e

These methods can face quite similar problems in case
almost intractable geometries, but they are to some ex
complementary. For example, the conformal mapping dia
nalization technique can provide a complete set of
eigenenergies up to some maximal value beyond which
calculations cannot be performed due to the lack of comp
storage random access memory, which means that we ca
reach very high-lying eigenstates.~Our present record@10# is
about 35 000 for the size of the banded matrix that we di
onalize in double precision, yielding at least 12 000 go
levels with accuracy of at least 1% of the mean level sp
ing.!

However, using the PWDM it is possible to go higher
energy by orders of magnitude, but then only a few selec
states can be calculated with many intermediate states in
spectral stretch missing. Therefore, the geometry of so
interesting and representative high-lying states can be
lyzed, but the sample is typically not sufficiently comple
~there are many states missing! to perform statistical analy-
sis. ~See, e.g., our recent papers on this topic@12,13#.! The
reasons for a failure of one of these methods can be q
different. For example, in the BIM the main difficulty stem
from the existence of ‘‘exterior chords’’ in nonconvex geom
etries in its standard formulation~see Sec. III!, but the
trouble might be overcome by an appropriate reformulat
of the method adapted to the correct semiclassical beha
We will discuss this in Sec. III, where we also show th
classical chaos is completely irrelevant for the BIM. On t
contrary, in the PWDM we find that the classical chaos
relevant for numerical accuracy especially in the semicla
cal limit of the sufficiently small effective Planck consta
\e f f reached at sufficiently high eigenenergies. This dem
stration and its qualitative explanation is the main subjec
our present paper. To give a specific example we sho
mention isospectral billiards discovered and proved by G
donet al. @14#, which have been investigated experimenta
4095 © 1998 The American Physical Society
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4096 57BAOWEN LI, MARKO ROBNIK, AND BAMBI HU
by Sridhar and Kudrolli@15# and it is also our experienc
@16# that the BIM fails in this case~namely, due to strong
nonconvexities!, whereas the PWDM atb512 yields the ac-
curacy of eigenenergies of within a few percent of the me
level spacing, except for some very special eigenmodes
which surprisingly we find agreement within double pre
sion ~16 digits! and which are characterized by the fact th
these eigenvalues agree with the analytic solutions for
triangles within single precision~eight digits!. So the fact
that in this and similar cases the experimental precision~for
some levels! exceeds the best possible numerical precis
even when using the best available methods is embarras
for a theoretician, but also motivation for further work.

The paper is organized as follows. In Sec. II we focus
attention on the PWDM. In Sec. III we first point out som
serious flaws in the derivation of the BIM in the literatu
and show how the final formula~which nevertheless wa
correct! should be derived in aregularizedway and then
discuss the numerical results of the BIM and the releva
with classical dynamicss and geometry, etc. In Sec. IV
give a discussion and conclusions.

II. THE PLANE-WAVE DECOMPOSITION METHOD
OF HELLER

A. The numerical procedure of the PWDM

In this section we present our general exposition of
PWDM following @12#. To solve the Schro¨dinger equation
~1! for c(r ) with the Dirichlet boundary conditionc(r )50
on ]B we use the ansatz of the superposition of plane wa
~originally due to Heller@7#!

c~r !5(
j 51

N

ajcos~kx jx1ky jy1f j !, ~2!

where kx j5k cosuj , ky j5k sinuj , k25E, and we use the
notation r5(x,y). N is the number of plane waves andf j
are random phases, drawn from the interval@0,2p), assum-
ing a uniform distribution, andu j52 j p/N determining the
direction angles of the wave vectors chosen equidistan
The ansatz~2! solves the Schro¨dinger equation~1! in the
interior of the billiard regionB, so that we have only to
satisfy the Dirichlet boundary condition. Taking the rando
phases, as we discovered, is equivalent to spreading the
gins of plane waves all over the billiard region, and at t
same time this results in reducing the CPU time by almo
factor of 10. For a givenk we set the wave function equal t
zero at a finite numberM of boundary points~primary
nodes! and equal to 1 at an arbitrarily chosen interior poi
Of course,M>N. This gives an inhomogeneous set of equ
tions that can be solved by matrix inversion. Usually t
matrix is very singular and thus thesingular value decompo
sition method has been invoked@7,17#. After obtaining the
coefficients aj we calculate the wave functions at oth
boundary points~secondary nodes!. We always have three
secondary nodes between a pair of primary nodes. The e
rience shows that a further increase of the number of sec
ary nodes does not enhance the accuracy. The sum o
squares of the wave function at all the secondary no
~Heller called this sum ‘‘tension’’! would be ideally zero if
k2 is an eigenvalue and if Eq.~2! is the corresponding exac
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solution of Eq.~1!. In practice it is a positive number. There
fore, the eigenvalue problem now is to find the minimum
the tension. In our numerical procedure we have looked
the zeros of the first derivative of the tension; namely,
derivative is available analytically or explicitly from Eq.~2!
once the amplitudesaj have been found. In this paper w
make the choiceM5N since it proved to be sufficient fo
calculating the lowest 100 states whose accuracy we ana
~For the high-lying states studied in our paper@12#, we have
usedM55N/3.! It must be pointed out that the wave fun
tions obtained in this way are not~yet! normalized due to the
arbitrary choice of the interior point where the value of t
wave function has been arbitrarily set equal to unity. W
therefore explicitly normalize these wave functions befo
embarking on the analysis of their properties.

The accuracy of this method of course depends on
number of plane waves (N) and on the number of the pri
mary nodes (M ) and we have a considerable freedom
choosingN and M>N. In order to reach a sufficient accu
racy the experience shows that we should take at le
N53L/lde Broglie and M5N, whereL is the perimeter of
the billiard andlde Broglie is the de Broglie wavelength
equal to 2p/k. With this choice in the present context an
for the lowest 100 states we reach the double precision
curacy~16 digits! for all levels of integrable systems such
the rectangular billiard~where the eigenenergies can b
given trivially analytically! and the circular billiard, but also
for the Robnik billiardBl for small l<0.1. Introducing the
density of discretizationb defined as the number of numer
cal nodes per one de Broglie wavelength on the bound
we thus write the number of plane wave
N5bL/lde Broglie5b2pL/k.

The main problem of investigation in this paper is
study the dependence of the systematical numerical errorDE
~i.e. the error due to the finite discretization! on the density
of discretizationb and the dependence ofDE on the geom-
etry ~billiard shape parameter! at fixedb. In order to perform
a systematic analysis the errors should be measured in s
natural units and in our case this is of course just the m
level spacing, which, according to the leading term of t
Weyl formula, is equal to 4p/A, whereA is the area of the
billiard B. From now on we shall always assume thatDE of
a particular energy level is in fact measured in such natu
units. Of course one immediately realizes that the errorDE
fluctuates wildly from state to state~see Figs. 5 and 7! so that
generally nothing can be predicted about it individual
Therefore, the approach must be a statistical one and so
typically take an average of the errorsDE over a suitable
ensemble of states. Specifically, in all cases of this paper
have taken the average of the absolute values ofDE over the
lowest 100 states~of a given symmetry class! and denoted it
by ^uDEu&. It is important and should be mentioned that w
have also checked the stationarity of such an average v
over consecutive spectral stretches of 100 states each, so
our procedure does make sense. In addition, we have
investigated the standard deviations uDEu5Š(uDEu
2^uDEu&)2

‹

1/2, which always has the same order of mag
tude as the average value.

It turns out that the accuracy of energy levels depe
nontrivially onb, unlike in the BIM, where we find always a
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57 4097RELEVANCE OF CHAOS IN NUMERICAL SOLUTIONS . . .
power law~see Sec. III!, namely, it typically shows broken
power law. By this we mean that^uDEu& obeys a power law

^uDEu&5Ab2a, ~3!

with very largea for sufficiently smallb, b<bc , whereas
for larger b>bc it obeys a rather flat power law with ver
small positivea ~close to zero!. Therefore in contradistinc
tion to the BIM, it is difficult to explore the general depe
dence of̂ uDEu& on b if there is any such universality at al
However, in order to investigate the dependence of the a
racy on geometry and the implied dynamical properties
billiards, we have decided to fix the value ofb and have
chosenb512, and then we look at the dependence of^uDEu&
on the shape parameters of three one-parameter billia
namely, the Robnik billiard, the Bunimovich stadium, a
the Sinai billiard.

Finally, we would like to discuss how to estimate th
error. As usual, to speak of an error we need to have a s
dard value. The question is how to get the standard value
different quantum billiards. As for the integrable billiar
such as a rectangle, we know analytically the exact valu
For a circular billiard, they are the zeros of the Bessel fu
tion, which can be calculated very precisely. However,
other billiards, in particular the chaotic billiards, there are
true, accurate values available~otherwise we do not need th
numerical methods anymore!. In fact, both the PWDM and
BIM can be self-tested for their accuracy. On the one ha
in both cases, the numerical value at very largeb can be
regarded as the ‘‘true’’ value. On the other hand, in t
PWDM one may change the position of the interior point a
compare the two lists of eigenenergies obtained. Moreo
since we have also some other special methods invente
the billiard of a specific geometry, such as the diagonali
tion method for the Robnik billiard and the scattering a
proach for the Sinai billiard, in these techniques the accur
is well controlled and we may obtain more accurate res
than the BIM and PWDM; thus we can use the eigenene
list from them as the standard value.

In our studies in this paper, the ‘‘standard values’’ of t
Robnik billiard are provided by Prosen@18# by using the
diagonalization method with a very large dimension of t
matrix and thus the lowest 1000 eigenvalues are guaran
with an accuracy of at least 10212 in units of the mean leve
spacing for the large shape parameterl. The eigenvalues o
the Sinai billiard were provided by Schanz and Smilans
@19# by using their scattering method. The accuracy is ab
1027 of the mean level spacing, which is already hi
enough for our purpose. For the billiards whose eigenval
are not available from other methods, we always take
eigenvalues at very large density of discretizationb ~say 30!
as the true value.

B. Relevance of chaos with the numerical accuracy

As is well known, in the classically integrable quantu
Hamiltonian systems in the semiclassical limit~of suffi-
ciently small\) the eigenfunction can locally be describe
by a finite superposition of plane waves with the same wa
number; in the case of plane billiards it isk5AE. If the
quantum system has ergodic classical dynamics then in
semiclassical limit locally the wave function can be rep
u-
f

s,

n-
in

s.
-
r
o

d,

d
r,
for
-

-
y

ts
y

ed

y
ut

s
e

e

he
-

sented as a superposition ofinfinitely many plane waves with
the samek and with the wave vectors being isotropical
distributed on the circle of radiusk @20#. Moreover, the er-
godicity suggests random phases for the ensemble of p
waves, which implies that to the lowest approximation t
wave function is a Gaussian random function. While this i
good starting approximation, originally due to Berry@20# and
recently verified by Aurich and Steiner@21# and also by Li
and Robnik@12#, the phases are actually not random b
correlated in a subtle way dictated by the classical dynam
especially along the short and the least unstable periodic
bits, which is the origin of the scar phenomenon@7,22–25#.
Thus we can qualitatively very well understand that t
PWDM should work well or even brilliantly in cases of cla
sically integrable billiards, whereas in the ergodic syste
we expect a severe degradation of the accuracy~at fixedb)
simply because the finite number of plane waves cannot c
ture the correct~infinite! superposition of plane waves ever
where in the interior of the billiard. If the system is a gene
system of a mixed type with regular and irregular regio
coexisting in the classical phase space, a scenario desc
by the Kolmogorov-Arnold-Moser~KAM ! theory, then the
degradation of accuracy~at fixed b) with increasing frac-
tional measure of the chaotic component~denoted byr2) is
certainly expected. However,r2 is not the only paramete
that controls the accuracy~at fixedb) since, as we shall see
the dynamical properties such as the diffusion tim
Lyapunov exponent, and Kolmogorov entropy also play
role. It is the aim of the present paper to numerically explo
this type of behavior in three different billiard systems.

The first billiard system is defined as the quadratic~com-
plex! conformal mapw5z1lz2 from the unit diskuzu<1
from thez plane onto thew5(x,y) complex plane. The sys
tem has been introduced by Robnik@26# and further studied
by Hayli et al. @27#, Frisk @28#, and Bruus and Stone@29# for
various parameter valuesl. Since the billiard~usually called
the Robnik billiard by the people in the community! has an
analytic boundary it goes continuously from the integra
case ~circle, l50) through a KAM-like regime of small
l<1/4 with mixed classical dynamics and becomes nonc
vex at l51/4 ~the bounce map becomes discontinuou!,
where the Lazutkin caustics~invariant tori! are destroyed,
giving way to ergodicity. It was shown by Robnik@26# that
the classical dynamics at these values ofl is predominantly
chaotic ~almost ergodic!, although Hayli et al. @27# have
shown that there are still some stable periodic orbits s
rounded by very tiny stability islands up tol50.2791. At
largerl we have reason and numerical evidence@30# to ex-
pect that the dynamics can be ergodic. Recently it has b
proven rigorously by Markarian@31# that for l51/2 ~a car-
dioid billiard! the system is indeed ergodic, mixing, andK.
This was further motivation to study the cardioid billiar
classically, semiclassically, and quantitatively by seve
groups, e.g., Ba¨cker et al. @32# and Bruus and Whelan@33#.
The billiard shape forl50.4 is shown~the upper half! in
Fig. 1~a!. Since all states are either even or odd we can t
into account these symmetry properties explicitly. In fact,
want to specialize to the odd eigenstates only. Therefore
order toa priori satisfy the Dirichlet boundary condition o
the abscissa of Fig. 1~a! we specialize the general ansatz~2!
to the form
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c~r !5(
j 51

N

ajcos~kx jx1f j !sin~ky jy!, ~4!

where all the quantities are precisely as in Eq.~2! except that
theN discretization~primary! nodes are equidistantly locate
only along the half of the full billiard boundary, so thatb is
exactly the same as in using the ansatz~2! for the full bil-
liard.

In Fig. 2 we show the results for this billiard, namely, w
plot ^uDEu& ~in logarithmic units! versusl at fixed b512.
Close to integrability (l<0.1) we reach the accuracy withi
14–15 digits, which is almost the double precision on o
machine~16 digits!, in which all our calculations have bee
performed. As the value ofl increases we observe a dr
matic deterioration of the accuracy where^uDEu& increases
by many orders of magnitude, namely, by almost 13 deca
leveling off at ^uDEu& approximately equal to 1022, which
means that we have now the accuracy of only a few perc
of the mean level spacing. This dramatic but quite smo
increase of̂ uDEu& is certainly related to the emergence
classical chaos with increasingl, but definitely isnot con-
trolled merely byr2 becauser2 reaches the value of 1~al-
most ergodicity! already atl51/4 @10,26#, whereaŝ uDEu&
still varies considerably in the regionl>1/4. Thus it is ob-

FIG. 1. Geometry of the boundary of the three desymmetri
billiards: ~a! the Robnik billiard,~b! the Bunimovich stadium,~c!
and the Sinai billiard.
r

s,

nt
h

vious that in the semiclassical picture also other class
dynamical properties~measures of the ‘‘hardness’’ of chao!
play an important role. Although we do not have a quanti
tive theory yet, one should observe that according to Rob
@26#, the Lyapunov exponent and Kolmogorov entropy (h)
vary also quite smoothly withl, suggesting a speculatio
that there might be a relation between^uDEu& andh.

Another demonstration of the effectivity of the PWDM
and its accuracy is displayed in Table I, where we show
numerical value of the scalar product of two consecut
normalized eigenstates, namely, the ground state and the
excited state, denoted byO12, which ideally should be zero
We see here too that the accuracy decreases~by orders of
magnitude! sharply but smoothly with increasing shape p
rameterl.

It is then interesting to similarly analyze an ergodic sy
tem such as the stadium of Bunimovich shown in Fig. 1~b!,
where the shape parameter isa/R and we have looked at th
results for 0<a/R<10. In fact, for our purposes we hav
chosen and fixedR51 in all cases. Since this billiard is
known to be rigorously ergodic~and mixing andK) for any
a.0 in this caser2 is exactly 1 and constant. We hav
calculated the lowest 100 energy levels of the odd-odd s

d

FIG. 2. Ensemble-averaged~over 100 lowest odd eigenstate!
absolute error~measured in units of the mean level spacing! ^uDEu&
~in logarithmic units! versus the billiard shape parameterl for the
Robnik billiard with a fixed density of boundary discretizatio
b512. The numerical points are denoted byd, which are joined by
a line to guide the eye.

TABLE I. Test of the orthogonality of the eigenstates and t
scalar product of two consecutive normalized wave functionsO12,
namely, the ground state and the first excited state, for the Ro
billiard at different shape parameters. The number in brackets
resents the power of 10.

l O12

0 2.0@216#

0.1 25.0@215#

0.2 7.8@210#

0.3 4.8@26#

0.4 5.5@24#

0.5 1.5@23#
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metry class. Therefore, in this case the general ansatz~2! can
be specialized as

c~r !5(
j 51

N

ajsin~kx jx!sin~ky jy!. ~5!

Here again the discretization~primary! nodes are only on the
outer boundary of the stadium with discretization dens
b512. From our plot in Fig. 3 we see that in the integrab
case of the circle (a50) we again reach the accuracy with
at least 14 digits, but this brilliant accuracy at fixedb512
deteriorates almost discontinuously upon increasinga and
then^uDEu& still increases by about two orders of magnitu
when a goes from 0.1 to 10. It appears to us that class
chaos is definitely relevant for the accuracy of the meth
which might and should be explained by an appropri
theory in the semiclassical level. As an observation
should mention that the Kolmogorov entropy increas
sharply witha/R whena/R goes from 0 to about 1, where

FIG. 3. Ensemble-averaged~over 100 lowest odd-odd eigen
states! absolute error~measured in units of the mean level spacin!
~in logarithmic units! versus the billiard shape parametera/R for
the Bunimovich stadium with a fixed density of boundary discre
zation b512. The numerical points are denoted byd, which are
joined by a line to guide the eye.

FIG. 4. Ensemble-averaged~over 100 lowest eigenstates! abso-
lute error~measured in units of the mean level spacing! versus the
billiard parameterR ~the radius of inner circle! for the desymme-
trized Sinai billiard with a fixed density of boundary discretizati
b512. The numerical points are denoted byd, which are joined by
a line to guide the eye.
y

l
,

e
e
s

reaches the maximum, and then decreases slowly@34#,
whereas our̂ uDEu& increases monotonically. Thus, if ther
is a relationship between̂uDEu& and Kolmogorov entropy it
certainly is not a simple one.

We have tested also another system with hard cha
namely, the Sinai billiard sketched in Fig. 1~c! ~desymme-
trized!. The system is known to be ergodic, mixing, andK.
In calculating the 100 lowest energy levels of the desymm
trized Sinai billiard we used the same specialized ansatz a
Eq. ~4!, thereby taking into account explicitly the Dirichle
boundary condition on the abscissay50. In this caseb is the
density of discretization of the equidistant nodes along
rest of the perimeter. Similarly as in the case of the stadiu
we easily reach the double precision of 16 digits in the li
iting integrable case of zero radiusR50, but this accuracy is
almost instantly lost by increasingR, as seen in Fig. 4. The
value of ^uDEu& levels off at about 1024–1022 for all R
between 0.025 and 0.45.

As a final technical point we comment on the stationar
of ^uDEu& as a function of energy, which has been confirm
for the Robnik billiard atl50.27, where the average valu
over consecutive spectral stretches over 100 states has
found to be quite stable. Specifically, to illustrate this findi
we plot in Fig. 5 the absolute values of the errors of t
lowest 400 consecutive eigenstates where one can see
the average value over 100 consecutive states is quite s
indeed. This is shown in Table II for four intevals of 10
states each. We should emphasize again that the fluctua

-

FIG. 5. Absolute error of eigenstates~in logarithmic units! ver-
sus eigenenergy for the lowest 400 odd eigenstates of the Ro
billiard at l50.27. The averages over consecutive stretches~of 100
states each! are given in Table II, demonstrating that^uDEu& is quite
stationary.

TABLE II. Stationarity test of̂ uDEu& for the Robnik billiard at
l50.27 for the lowest 400 odd eigenstates.

Average stretch ^uDEu&

1–100 1.54@27#

101–200 2.21@27#

201–300 2.77@27#

301–400 2.03@27#

1–400 2.13@27#



fo

a
v

ry
od
m

i
ie
ch
s

w
b

in
in

u
y

d

-
o
o
he

y,
a

l to
-
r i
-

-
tw

h

th
y

st

n

s
oth

ua-
tly
-
-
-

ary

4100 57BAOWEN LI, MARKO ROBNIK, AND BAMBI HU
is very big. We have calculated the standard deviation
these 400 levels; it iss uDEu57.4031027, which has the
same order of magnitude as the average value~see Table II!.
It is our numerical experience that for all cases the stand
deviations are always about the same order of average
ues.

III. BOUNDARY INTEGRAL METHOD

After discussing the PWDM, we now turn to another ve
important numerical method: the boundary integral meth
This method is widely used not only in studying quantu
chaos, but also in engineering@35#. In this section we would
give an extensive numerical investigation of its accuracy
relation to classical dynamics and geometrical propert
However, before we go into a detailed numerical and te
nical analysis, we would like to point out two serious flaw
in the derivation of the BIM in the literature and show ho
the final formula, which nevertheless is correct, should
derived in a sound way.

A. A regularized derivation of the BIM

In order to clearly expose the difficulties and the errors
the derivation of the BIM offered in the literature, e.g.,
Ref. @5#, we present ourregularizedderivation, by which we
mean that we construct and use a Green function that a
matically ~by construction! satisfies the Dirichlet boundar
condition ~vanishes locally on the boundary]B of the bil-
liard domainB), which is achieved by employing the metho
of images~see, e.g., the article of Balian and Bloch@36# and
the references therein!. This will enable us to avoid commit
ting two errors, which, however, luckily compensated f
each other.First, in taking the normal derivatives on the tw
sides of Eq.~6! in @5#, on the right-hand side we must use t
value c(r ), which is the interior solution insideB, rather
than 1

2 c(r ), which is the value exactly on the boundar
simply because in taking the derivatives we must evalu
the function at two infinitesimally separated points norma
the boundary.Second, this error of taking the unjustified fac
tor 1/2 is then exactly compensated for by another erro
arriving at Eq.~8! in @5#, namely, by interchanging the inte
gration along the boundary]B and the normal differentia
tion, because due to singularities on the boundary these
operations do not commute.

Now we offer our regularized derivation. We are searc
ing for the solutionc(r ) with eigenenergyE5k2 obeying
the Helmholtz equation~1!, with the Dirichlet boundary con-
dition c(r )50 on the boundaryrP]B. We will transform
this Schro¨dinger equation for our quantum billiardB into an
integral equation by means of theregularizedGreen function
G(r ,r 8), which solves the defining equation

¹ r
2G~r ,r 8!1k2G~r ,r 8!5d~r2r 8!2d~r2r 8R!, ~6!

wherer and r 8 are inBø]B and r 8R is the mirror image of
r 8 with respect to the tangent at the closest-lying point on
boundary~and thus ifr 8 is sufficiently close to the boundar
then r 8R is outside the billiardB) ~see Fig. 6!. The solution
can easily be found in terms of the free propagator~the free-
particle Green function on the full Euclidean plane!
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G0~r ,r 8!52
1

4
iH 0

~1!~kur2r 8u!, ~7!

whereH0
(1) is the zeroth-order Hankel function of the fir

kind @37#, namely,

G~r ,r 8!5G0~r ,r 8!2G0~r ,r 8R!, ~8!

such that nowG(r ,r 8) is zero by construction for anyr 8 on
the boundary]B, in contradistinction to the Green’s functio
defined and used in Eq.~5! in @5#. Multiplication of Eq. ~6!
by c(r ) and the Helmholtz equation~1! by G(r ,r 8), subtrac-
tion, integration over the area insideB, and using Green’s
theorem yields

R ds@c~r !n•¹rG~r ,r 8!2G~r ,r 8!n•¹rc~r !#5c~r 8!,

~9!

wheres is the arclength on the boundary]B oriented coun-
terclockwise,n is the unit normal vector to]B at r oriented
outward, and this equation is now valid forall r 8 inside and
on the boundary ofB. Since in this equation everything i
regular, we can take the normal partial derivatives on b
sides. Following the usual notation in@5#, we define the nor-
mal derivative ofc at the points as

u~s!5n•¹rc„r ~s!… ~10!

and thus using the boundary conditionc(r )50 we arrive at

u~s!522 R ds8u~s8!n•¹rG0~r ,r 8!. ~11!

In this way we have correctly derived the main integral eq
tion of the boundary integral method, which is correc
given as Eq.~8! in @5# ~where the two errors exactly com
pensate for each other!, so that all the further steps in work
ing out the geometry of Eq.~11! and the numerical discreti

FIG. 6. Notation of the angles and chords used in bound
integral method~BIM !.
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zations are exactly the same as in@5#. As shown in Fig. 6, we
define the length of the chord between two points on
boundaryr (s) and r (s8) as

r~s,s8!5ur ~s!2r ~s8!u ~12!

and the angleu(s8,s) is the angle between the chord and t
tangent to]B at s8. The chord is an oriented separation ve
tor pointing from r (s) to r 85r (s8). Of course u(s,s8)
Þu(s8,s). Thus following the notation of@5# we can write

n8•
]G0~r ,r 8!

]r 8
5sinu~s8,s!

]G0

]r
~13!

and we obtain finally

u~s!52
1

2
ik R ds8u~s8!sinu~s,s8!H1

~1!$kr~s,s8!%.

~14!

In numerically solving this integral equation we have us
precisely the same primitive discretization procedure as
@5#, which turned out to be better than some other m
sophisticated versions. So we simply divide the perimeteL
into N equally long segments and thus define

sm5mL/N, r~sl ,sm!5r lm ,

u~sl ,sm!5u lm , 1< l ,m<N. ~15!

Therefore, numerically, we are searching for the zero of
determinantDN(E)5det(Mlm), where Mlm are the matrix
elements of theN3N matrix

Mlm5d lm1
ikL
2N

sinu lmH1
~1!~kr lm!, ~16!

whereE5k2. Due to the asymmetryu lmÞuml , this matrix is
a general complex non-Hermitian matrix. For the diago
elementsl 5m, where u lm is either zero orp, the proper
limit of the second term on the right-hand side in Eq.~16!
must be taken and then it is equal tok(s)L/2pN, where
k(s) is the curvature of the boundary ats.

One important aspect of this formalism is the semiclas
cal limiting form that has been extensively studied by Bo
man @6#. At this point we want to make the following com
ment. In the cases of nonconvex geometries we will h
exterior chords connecting two points on the boundary su
that they lie entirely, or at least partially, outsideB. While
formally the method and the procedure in such cases is
fectly correct, in reality it might be problematic, which ca
be seen by considering the semiclassical limit. The form
leading order in the asymptotic expansion of the Han
functionH1

(1) ~Debye approximation! does not match the ac
tually correct semiclassical leading approximation th
would be spanned by the shortest classical orbit connec
the two points via at least one or many collision points
between. Therefore, we understand and expect that
method must meet some difficulties in cases of noncon
geometry. This has been partially confirmed in our pres
work, as we will show in Sec. III B, while the analytica
work to reformulate the method including the multiple col
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sion expansions is in progress@38# and is expected to dea
satisfactorily with nonconvex geometries.

In the Sec. III B we shall analyze the numerical accura
of the BIM as a function of the density of discretization

b5
2pN

kL , ~17!

in a variety of quantum billiards with integrable, KAM-type
or ergodic classical dynamics, including such with nonco
vex geometry. The main result is that there is always a po
law so that the error of eigenenergy in units of the mean le
spacing, after taking the average of the absolute value ov
suitable ensemble of eigenstates, obeys^uDEu&5Ab2a, but
the exponenta ~and the prefactorA) is nonuniversal.

B. Numerical results

The numerical procedure we have used to solve the v
ety of quantum billiards is exactly as described above a
therefore it is precisely the same as in@5#. Our main task
now is to analyze in detail the behavior of the BIM as
function of the density of discretizationb, especially in rela-
tion to the geometrical properties ofB ~nonconvexities! and
in relation to classical dynamics, whose chaotic behavio
expected to imply interesting methodological and algori
mic manifestation of quantum chaos.

Again, like in the PWDM, we have to measure the n
merical error of the eigenenergies in units of the mean le
spacing and perform some kind of averaging over a suita
ensemble of consecutive states. However, this will ma
sense only if such a local average of the error is station
~constant! over a suitable energy interval. This condition h
been confirmed to be satisfied in almost all cases that
checked. In the case of the circle billiard and in the case
the cardioid billiard this stationarity of the locally average
error is shown in Figs. 7~a! and 7~b!, respectively, where we
plot the data for about 95% of the lowest 1000 odd leve
The average value^uDEu& for these two cases ar
3.8931025 ~circle! and 1.9931023 ~cardioid billiard!, while
the standard deviationss uDEu are 3.6731025 ~circle! and
2.9131023 ~cardioid billiard!, respectively. Again, like in
the case of the PWDM, the standard deviation in the BIM
of the same order as the average value.

We have established that we have always taken the a
age of the absolute value of the error~in units of the mean
level spacing! over a suitable ensemble of eigenstates,
which we have chosen the lowest 100 eigenstates in
cases. Actually, strictly speaking, we have taken ab
90–95 levels from the ensemble of the lowest 100 odd l
els: Since in using the BIM we always miss some levels,
quota of missing levels typically is a few percent, depend
on the step size. In our case the step size is 1/20 of the m
level spacing and the fraction of missing levels varied fro
about 10% in the integrable billiard with Poisson statistics
about 5% in ergodic cases with Gaussian orthogonal
semble statistics.

In Figs. 8~a!–8~f! we show the error̂uDEu& versusb for
six billiard shapes. In Fig. 8~a! we have the full circle bil-
liard. In Fig. 8~b! we have a 270° (53p/2) segment of the
annulus billiard with inner radiusR150.45 and outer radius
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R250.5. These data were based on the very careful wor
Hess@39#, who has kindly communicated to us his unpu
lished results and the analysis, which we have independe
checked and confirmed. In Figs. 8~c! and 8~d! we have the
Robnik billiard with shape parametersl50.15 andl51/2,
respectively. In Fig. 8~e! we show the results for the 1/
Bunimovich stadium with the size 232 for the central
square. In Fig. 8~f! we have the 1/4 Sinai billiard with di
mensions 232 for the square and circular radiusR51/2.
The best-fitting power-law curve is described by Eq.~3! and
is seen to provide a very significant fit in all six cases.

As for the Robnik billiard, one should be reminded that
l50 we have integrable classical dynamics in the cir
billiard and atl50.15 we have KAM-type dynamics with
islands of stability@16#; it should be emphasized that
l51/4 we have a zero curvature point atz521 and for all
l.1/4 the shape is nonconvex! while at l51/2 we have
ergodicity and also nonconvex geometry. Technically, in
cases at variousl we have calculated all states by applyin
the BIM, but then, for technical reasons, compared only
odd states with their exact value, which are supplied by
conformal mapping diagonalization technique@8,10#.

In Figs. 8~a!–8~f! we thus observe that there is no cle
relationship between the value ofa and the degree of clas
sical chaos in all the various billiards. However, it is
interesting ‘‘experimental’’ result that the power law~3!
seems to be universally valid, with nonuniversal numeri
value ofa andA.

FIG. 7. BIM error~measured in units of the mean level spacin!
of eigenstates versus energy. The error is the difference betwee
BIM value and the exact value. About 95% of the lowest 1000 o
states are shown. Plot~a! is for the full circle billiard and~b! for the
cardioid billiard (l51/2). In both casesb is fixed,b56.
of
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Having established the validity of the power law~3!, it is
now most interesting and also immensely CPU time consu
ing ~it took almost one month of CPU time on a Conve
C3860 to produce Figs. 9 and 10! to look at the variation of
a with the billiard shape parameterl, which is shown in Fig.
9. There is a flat region of almost constanta within
0<l<1/4: It fluctuates slightly around 3.5. Atl.1/4 the
nonconvexities of the boundary appear; unlike naive exp

the
d

FIG. 8. Ensemble-averaged~over about 95% of the lowest 10
odd eigenstates! absolute BIM error versus the density of bounda
discretizationb and the best power-law fit for the various billiard
d represents the numerical data and the curve is the best powe
fit whosea and coefficientA are given in each box. In~a! we have
a full circle billiard, in ~b! the 3p/2 segment of a circular annulu
with inner and outer radii 0.45 and 0.5, respectively, in~c! and ~d!
the Robnik billiard withl50.15 and1/2, respectively, in~e! the
1/4 232 Bunimovich stadium, and in~f! the 1/4 Sinai billiard with
radius 1/2 inside a square of size 2.

FIG. 9. Power-law exponenta versus the billiard shape param
eter l for the Robnik billiard. The error bars denote the standa
deviation from the best fit.
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tation,a now even increases up to a value of slightly larg
than 5 reached atl'0.35 and then starts to decrease rapi
down to the value of about 2 atl51/2. Therefore, there is no
clear correlation with either the nonconvexities or the clas
cal chaos.

In addition toa in Eq. ~3! we would also like to know the
value of the constantA ~the prefactor! in each case. This is
given in Fig. 10 by fixingb512 and plotting the mean ab
solute value of the error~averaged over the lowest 100 od
states! versusl. Here we see that the mean error^uDEu& is
almost constant up tol<0.35 and is equal to abou
631026. At l>0.35 we observe the rapid increasing
^uDEu&. Here again we cannot draw a clear conclusion,
only note that the error starts to increase rapidly in the
gime where classical chaos becomes ‘‘hard’’~the Kolmog-
orov entropy increases steeply@26#!.

Most of our results are summarized in Table III for thr
classes of billiard systems with different type of classi

FIG. 10. Ensemble-averaged absolute BIM error~in units of the
mean level spacing! ^uDEu& ~in logarithmic units! with fixed b512
against the billiard shape parameterl for the Robnik billiard.

TABLE III. Power-law exponenta and the average absolut
value of the error̂ uDEu& with b512 for different billiards. For
details of the KAM-type billiards see also Figs. 9 and 10.

Type Quantum billiard a ^uDEu&b512

Integrable circle~half! 2.94 6 0.17 6.74@25#

circle ~full ! 3.44 6 0.18 5.97@26#

rectangle-triangle 3.286 0.29 4.08@25#

segment annulus 2.236 0.24 1.77@23#

KAM Robnik ~full !
(0,l,1/4) ' 3.4 ' 5.0@26#

Robnik ~half!
(0,l,1/4) ' 2.9 ' 7.0@25#

Ergodic stadium~1/4! 3.00 6 0.16 1.18@24#

cardioid ~full ! 2.10 6 0.13 3.04@24#

Sinai ~1/4! 2.47 6 0.05 3.39@23#

Robnik ~full !
(0.3,l,1/2) see Fig. 9 see Fig. 10
r
y
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-
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dynamics, namely, integrable, KAM-type, and ergodic s
tems. We show the calculated values ofa and also the av-
erage absolute value of the error^uDEu& with fixed value of
b512. The table clearly demonstrates that the power law~3!
for the BIM is universal, but not the exponenta and the
prefactorA. It also demonstrates that classical dynamics
little effect ona, whereas the nonconvexities of the boun
ary might be more important. There is no theory fora so far
except for the circle billiard, for which Boasman@6# predicts
a53, which might be marginally compatible with our dat
The bizzare behavior ofa in various dynamical regimes re
minds us of the difficulties in theoretical predictions of, e.
classical correlation functions@40#. In the table we include
also the results of the integrable case of the rectangular e
lateral triangle~half of the unit square! where a53.28 is
quite large and the ergodic case of the 1/4 Heller’s stad
(232 square plus two semicircles with a unit radius! in
which casea53.0 is also quite large.

When thinking about improving the efficiency and th
accuracy of the BIM we have also tried a more sophistica
version of the BIM, where we have explicitly used a Gau
ian integration on the boundary when discretizing our m
equation~11!. However, this experience has been negat
after many careful checks in various billiards and theref
we decided to resort to the primitive discretization of t
BIM, which is exactly the same approach as in@5#.

IV. DISCUSSION AND CONCLUSIONS

We believe that our present paper presents quite firm
merical ~phenomenological! evidence for the relevance o
classical chaos for the effectiveness of the PWDM as a qu
tal numerical method to solve a quantum billiard, which
manifested especially in the semiclassical limit and mig
and should be explained in terms of an appropriate semic
sical theory. Qualitatively, the reasons for this phenomen
are explained before. The parameterr2, the fractional vol-
ume of the chaotic component~s!, definitely plays an impor-
tant role, but is not the only aspect of classical chaos c
trolling the behavior of the error^uDEu& at fixed
discretization densityb. Namely, even in rigorously ergodi
systems wherer2 5 1, the error̂ uDEu& might be controlled
by the slow diffusion in the classical phase space~diffusive
ergodic regime, soft chaos!. If the classical diffusion time is
much longer than the break timetbreak (tbreak5\/D, where
D is the mean energy level spacing! then the quantal state
will be strongly localized in spite of the formal ergodicit
~for a demonstration see Ref.@13# for the Robnik billiard and
Refs. @41,42# for the stadium billiard! and therefore they
mimic a certain amount of regularity, enabling a better ac
racy of the PWDM, i.e.,̂ uDEu& is smaller than for com-
pletely extended chaotic high-lying eigenstates where,
cording to our experience, somehoŵuDEu& typically
saturates at about a few percent of the mean level spac
even if we drastically increaseb beyond any reasonable lim
its. Indeed, as can be seen by a comparison of Figs. 2–
the case of the stadium this saturation value of^uDEu& is
about 1024, which is almost two orders of magnitude small
than in the Sinai billiard~Fig. 4! and the cardioid billiard
~Fig. 2!. We think that this is due to the strong localization
eigenstates in the stadium, which is very well known to d
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play an unusual abundance of scars@7,24,25#. Thus our
present work is a motivation for a semiclassical theory
explain this aspect of quantum chaos that exhibits some
gorithmic properties of the PWDM in applying it to quantu
billiards with a variety of classical dynamics.

Further, we have investigated the behavior of the bou
ary integral method with respect to the density of discreti
tion b as defined in Eq.~17! (b is the number of numerica
nodes per de Broglie wavelength along the boundary! since
we expected some relevance of nonconvexities and pos
of classical chaos. In all cases we discovered that there
power-law behavior described in Eq.~3!. We wanted to
verify whether there is any systematic effect of classical
namics of quantum billiards ona andA. The answer is nega
tive. On the other hand, we found that the role of noncon
geometry of the boundary might be more important, althou
no final conclusion is possible at this point. The difficulti
of the BIM might be expected as explained before, and
easiest way to see that is to consider the semiclassical li
ing approximation of the BIM@38#. After explaining two
systematic errors in the literature where the integral B
equation is derived and where luckily the two errors mu
ally compensate for each other exactly, we have given
correct~regularized! derivation and discussed the BIM fo
malism thus derived. We agree that even in nonconvex
ometries it is formally right, but nevertheless practica
might be less efficient, which is expected by considering
semiclassical limit mentioned above. Therefore, we sugge
generalization of the BIM by using a multiple reflection~col-
lision! expansion in calculating the most appropriate Gre
function, which is another subject of our current investig
tion @38# and is important not only for studies in quantu
cs
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chaos but also in engineering problems@35# since it would
lead to a better efficiency of the BIM, namely, largera. Most
of our results are summarized in Table III, giving the ev
dence for the above conclusions.

It remains an interesting and important theoretical pro
lem to study the sensitivity of the eigenstates~eigenenergies
and wave functions! on the boundary data of eigenfunction
of which one aspect is also the dependence of the eigens
on the billiard shape parameter. If such sensitivity correla
with classical chaotic dynamics and at the same time m
fests itself in the accuracy of the purely quantal numeri
methods, then such a behavior would be one important m
festation of quantum chaos. This interesting line of thou
in the search for another aspect of quantum chaos has
further developed in another work@43#, where we also
present detailed studies of a level curvature distribution
other measures of the sensitivity of the eigenstates.
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