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In this paper we have tested several general numerical methods in solving the quantum billiards, such as the
boundary integral metho(BIM) and the plane-wave decomposition mettipVDM). We performed exten-
sive numerical investigations of these two methods in a variety of quantum billiards: integrable systems
(circles, rectangles, and segments of a circular aniukisimogorov-Arnold-Moser system@obnik bil-
liards), and fully chaotic system@rgodic, such as a Bunimovich stadium, Sinai billiard, and cardiod biliard
We have analyzed the scaling of the average absolute value of the systematitEembthe eigenenergy in
units of the mean level spacing with the density of discretizatigwhich is the number of numerical nodes
on the boundary within one de Broglie wavelengimd its relationship with the geometry and the classical
dynamics. In contradistinction to the BIM, we find that in the PWDM the classical chaos is definitely relevant
for the numerical accuracy at a fixed density of discretizabiolVe present evidence that it is not only the
ergodicity that matters, but also the Lyapunov exponents and Kolmogorov entropy. We believe that this
phenomenon is one manifestation of quantum chg88163-182808)05604-5

PACS numbgs): 05.45+b, 02.70.Rw, 03.65.Ge

I. INTRODUCTION These methods can face quite similar problems in cases of
almost intractable geometries, but they are to some extent
It is quite embarrassing to realize that in an attempt tocomplementary. For example, the conformal mapping diago-

numerically solve the Helmholtz equation nalization technique can provide a complete set of all
eigenenergies up to some maximal value beyond which the
VZy(r)+K2y(r)=0, (1) calculations cannot be performed due to the lack of computer

storage random access memory, which means that we cannot
satisfied by the scalar solutiof(r) with eigenenergye =k? reach very high-lying eigenstatg®©ur present recorfl0] is
inside a connected plane domdwith the Dirichlet bound- about 35 000 for the size of the banded matrix that we diag-
ary condition#(r)=0 on the boundary5, one can face onalize in double precision, yielding at least 12 000 good
enormous difficulties in cases of “problematic” geometries levels with accuracy of at least 1% of the mean level spac-
such as various nonconvex shapes. This is precisely thieg.)
problem of solving and describing the quantum billi&ds However, using the PWDM it is possible to go higher in
a Hamiltonian dynamical system, which is thus just the two-energy by orders of magnitude, but then only a few selected
dimensional Schidinger problem for a free point particle states can be calculated with many intermediate states in the
moving inside the enclosui@3, described by the wave func- spectral stretch missing. Therefore, the geometry of some
tion ¢(r) with the eigenenergfE=k2. The corresponding interesting and representative high-lying states can be ana-
classical problem is the classical dynamics of a freely movlyzed, but the sample is typically not sufficiently complete
ing point particle obeying the law of specular reflection upon(there are many states missjrig perform statistical analy-
hitting the boundary3. Quantum billiards and their corre- sis. (See, e.g., our recent papers on this tddi2,13.) The
spondence to their classical counterparts, especially in theeasons for a failure of one of these methods can be quite
semiclassical level, are important model systems in studiedifferent. For example, in the BIM the main difficulty stems
of quantum chaofl—-3]. There are severgleneralmethods from the existence of “exterior chords” in nonconvex geom-
for a numerical solution of Eq(1l) such as the boundary etries in its standard formulatiosee Sec. Il but the
integral methodBIM) (see, e.g.[4—6]) and the plane-wave trouble might be overcome by an appropriate reformulation
decomposition methoPWDM), introduced and advocated of the method adapted to the correct semiclassical behavior.
by Heller [7], whose analysis, especially in the light of the We will discuss this in Sec. Ill, where we also show that
relevance of classical chaos, is the subject of our presemiassical chaos is completely irrelevant for the BIM. On the
paper. Another quite general method is the conformal mapeontrary, in the PWDM we find that the classical chaos is
ping diagonalization technique introduced by Robilkand  relevant for numerical accuracy especially in the semiclassi-
further developed by Berry and Robiji#], Prosen and Rob- cal limit of the sufficiently small effective Planck constant
nik [10], and Bohigaset al. [11], which in principle should 7.+ reached at sufficiently high eigenenergies. This demon-
work for any shape, whereas, in practice, it is used for shapestration and its qualitative explanation is the main subject of
for which the conformal mapping onto the unit digk some  our present paper. To give a specific example we should
other integrable geometries admitting a simple basis for thenention isospectral billiards discovered and proved by Gor-
representationis sufficiently simple(possibly also analytic ~ donet al.[14], which have been investigated experimentally
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by Sridhar and Kudroll{15] and it is also our experience solution of Eq.(1). In practice it is a positive number. There-
[16] that the BIM fails in this casénamely, due to strong fore, the eigenvalue problem now is to find the minimum of
nonconvexities whereas the PWDM di=12 yields the ac- the tension. In our numerical procedure we have looked for
curacy of eigenenergies of within a few percent of the meanhe zeros of the first derivative of the tension; namely, the
level spacing, except for some very special eigenmodes faderivative is available analytically or explicitly from E(R)
which surprisingly we find agreement within double preci-once the amplitudes; have been found. In this paper we
sion (16 digits and which are characterized by the fact thatmaie the choicaM =N since it proved to be sufficient for
these eigenvalues agree with the analytic solutions for thg,|cylating the lowest 100 states whose accuracy we analyze.
triangles within single precisiofeight digity. So the fact (For the high-lying states studied in our pap&2], we have
that in this and similar cases the experimental precigion usedM =5N/3) It must be pointed out that the, wave func-

some levels e>.<ceeds the best_ possible nume_ncal PrECISION; s obtained in this way are ngtet) normalized due to the
even when using the best available methods is embarrasswég . . 7 i
bitrary choice of the interior point where the value of the

for a theoretician, but also motivation for further work. function has b bitraril ¢ |t W
The paper is organized as follows. In Sec. Il we focus oyp/@ve function has been arbitrarly set equal to unity. vve

attention on the PWDM. In Sec. Il we first point out S’Ometherefor.e explicitly normglize the_se wave functions before
serious flaws in the derivation of the BIM in the literature €MParking on the analysis of their properties.

and show how the final formulé@which nevertheless was  1he accuracy of this method of course depends on the
correct should be derived in aegularizedway and then ~humber of plane wavesN) and on the number of the pri-
discuss the numerical results of the BIM and the relevanc&ary nodes 1) and we have a considerable freedom in
with classical dynamicss and geometry, etc. In Sec. IV wechoosingN andM=N. In order to reach a sufficient accu-

give a discussion and conclusions. racy the experience shows that we should take at least
N=3L/N\ge grogiic aNd M =N, where L is the perimeter of
Il. THE PLANE-WAVE DECOMPOSITION METHOD the billiard and\ e grogiic IS the de Broglie wavelength,
OF HELLER equal to 2r/k. With this choice in the present context and

for the lowest 100 states we reach the double precision ac-
curacy(16 digitg for all levels of integrable systems such as
In this section we present our general exposition of thethe rectangular billiard(where the eigenenergies can be
PWDM following [12]. To solve the Schidinger equation given trivially analytically and the circular billiard, but also
(1) for (r) with the Dirichlet boundary conditiogy(r)=0  for the Robnik billiard3, for smallA=<0.1. Introducing the
on dB we use the ansatz of the superposition of plane wavedensity of discretizatiot defined as the number of numeri-
(originally due to Hellel7]) cal nodes per one de Broglie wavelength on the boundary,
we thus write the number of plane waves
N= bﬁ/)\de Broglie: b2’77£/k
The main problem of investigation in this paper is to
study the dependence of the systematical numerical Artor
wherek,;=k coség;, ky;=k sing,, k2=E, and we use the (i.e. the error due to the finite discretizatjoon the density
notationr=(x,y). N is the number of plane waves aqg of discretizationb and the dependence AfE on the geom-
arerandom phasesdrawn from the interval0,27), assum-  etry (billiard shape parameteat fixedb. In order to perform
ing a uniform distribution, and);=2j #/N determining the a systematic analysis the errors should be measured in some
direction angles of the wave vectors chosen equidistantlynatural units and in our case this is of course just the mean
The ansatz2) solves the Schdinger equation(1) in the level spacing, which, according to the leading term of the
interior of the billiard regions, so that we have only to Weyl formula, is equal to #/A, where A is the area of the
satisfy the Dirichlet boundary condition. Taking the randombilliard 5. From now on we shall always assume tA& of
phases, as we discovered, is equivalent to spreading the od-particular energy level is in fact measured in such natural
gins of plane waves all over the billiard region, and at theunits. Of course one immediately realizes that the eNBr
same time this results in reducing the CPU time by almost fluctuates wildly from state to stateee Figs. 5 and)&o that
factor of 10. For a givelk we set the wave function equal to generally nothing can be predicted about it individually.
zero at a finite numbeM of boundary points(primary  Therefore, the approach must be a statistical one and so we
nodeg and equal to 1 at an arbitrarily chosen interior point.typically take an average of the erroAf£ over a suitable
Of course M =N. This gives an inhomogeneous set of equa-ensemble of states. Specifically, in all cases of this paper we
tions that can be solved by matrix inversion. Usually thehave taken the average of the absolute valuestbver the
matrix is very singular and thus tlngular value decompo- lowest 100 stateff a given symmetry clagsind denoted it
sition method has been invokdd,17]. After obtaining the by (JAE]). It is important and should be mentioned that we
coefficientsa; we calculate the wave functions at other have also checked the stationarity of such an average value
boundary pointgsecondary nodésWe always have three over consecutive spectral stretches of 100 states each, so that
secondary nodes between a pair of primary nodes. The expeur procedure does make sense. In addition, we have also
rience shows that a further increase of the number of secondhvestigated the standard deviationa|AE‘=((|AE|
ary nodes does not enhance the accuracy. The sum of the(|AE|))?)Y2, which always has the same order of magni-
squares of the wave function at all the secondary nodetide as the average value.
(Heller called this sum “tension)’would be ideally zero if It turns out that the accuracy of energy levels depends
k? is an eigenvalue and if E@2) is the corresponding exact nontrivially onb, unlike in the BIM, where we find always a

A. The numerical procedure of the PWDM

N
zp(r):jgl ajcogkyx+Kkyy+ ¢;), (2
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power law(see Sec. I), namely, it typically shows broken sented as a superpositioniofinitely many plane waves with
power law. By this we mean th4tAE|) obeys a power law the samek and with the wave vectors being isotropically
w distributed on the circle of radius [20]. Moreover, the er-
(|AE[)=Ab"*, (3) godicity suggests random phases for the ensemble of plane
waves, which implies that to the lowest approximation the
wave function is a Gaussian random function. While this is a
good starting approximation, originally due to Befg0] and
recently verified by Aurich and Steing21] and also by Li

with very large« for sufficiently smallb, b<b., whereas
for largerb=b, it obeys a rather flat power law with very
small positivea (close to zerp Therefore in contradistinc-

tion to the BIM, it is difficult to explore the general depen- and Robnik[12], the phases are actually not random but

dence of|AE[) on b if there is any such universality at all correlated in a subtle way dictated by the classical dynamics
However, in order to investigate the dependence of the accu- y y y '

Y ; : specially along the short and the least unstable periodic or-
racy on geometry and the implied dynamical properties of O > _
billiards, we have decided to fix the value bfand have its, which is the origin of the scar phenomeriar22—-25.

choserb=12, and then we look at the dependencé|AfE|) Thus we can qualitatively very well understand that the

on the shape parameters of three one-parameter biIIiarngWDM should work well or even brilliantly in cases of clas-
namely, the Robnik billiard, the Bunimovich stadium, and ically integrable billiards, whereas in the ergodic systems

the Sinai billiard. we expect a severe degradation of the accutatyixed b)

Finally, we would like to discuss how to estimate the simply because the finite number of plane waves cannot cap-

ture the correctinfinite) superposition of plane waves every-
error. As usual, to speak of an error we need to have a stan- ; : . L . .

o where in the interior of the billiard. If the system is a generic
dard value. The question is how to get the standard values in

different quantum billiards. As for the integrable billiard, system of a mixed type with regular and wregulgr regions
coexisting in the classical phase space, a scenario described

such as a rectangle, we know analytically the exact values; i i
For a circular billiard, they are the zeros of the Bessel func?Dy the Kolmogorov-Arnold-MosetKAM ) theory, then the

tion, which can be calculated very precisely. However, fordegradatmn of accuraciat fixed b) with increasing frac-

other billiards, in particular the chaotic billiards, there are not|onal measure of the chaotic componédenoted byp,) is

true, accurate values availalflherwise we do not need the certainly expected. Howevep, is not the only parameter

numerical methods anymaren fact, both the PWDM and that controls the accuradat fixedb) since, as we shall see,

BIM can be self-tested for their accuracy. On the one handt,he dynamical properties such as the diffusion time,

in both cases, the numerical value at very lalgean be Lyapunov exponent, and Kolmogorov entropy also play a

regarded as the “true” value. On the other hand, in therOIe' It is the aim of the present paper to numerically explore

o L : this type of behavior in three different billiard systems.
PWDM one may change the position of the interior point and The first billiard system is defined as the quadrégizm-

compare the two lists of eigenenergies obtained. Moreover ) f | — N2 f th it disk|z|<1
since we have also some other special methods invented f Ilex contormal mapw=z+ Az Irom the unit disk|zj=<
from thez plane onto thev=(x,y) complex plane. The sys-

the billiard of a specific geometry, such as the diagonaliza . ;
tion method for the Robnik billiard and the scattering ap-tem has been introduced by Robri6] and further studied

proach for the Sinai billiard, in these techniques the accurac y Hayli etal.[27], Frisk[28]', and Brug; and Stor{@9)] for
arious parameter valués Since the billiardusually called

is well controlled and we may obtain more accurate result Robnik billiard by th le in th .
than the BIM and PWDM; thus we can use the eigenenerg € robnik bilfiard by the people in the commurjllly_ as an
analytic boundary it goes continuously from the integrable

list from them as the standard value. ircle. A=0) th h a KAM-lik . f I
In our studies in this paper, the “standard values” of the ©@S¢€ (circle, A=0) through a -lIke regime ot sma

Robnik billiard are provided by Proseii8] by using the A =<1/4 with mixed classical dynamics and becomes noncon-

diagonalization method with a very large dimension of theVex at A=1/4 (the bounce map becomes discontinpus

matrix and thus the lowest 1000 eigenvalues are guarantedtferé the Lazutkin causticenvariant tor) are destroyed,
with an accuracy of at least 18 in units of the mean level 91Ving way to ergodicity. It was shown by Robnjk6] that
spacing for the large shape parameteiThe eigenvalues of tr;]e clgssul:al dynamlc(:j; at tlhr:ase \k/]alueskl'oﬁ prledgmmhantly

the Sinai billiard were provided by Schanz and Smilanskych""o'[IC (ﬁ‘ mors],t ergodig ."I’}t oug Ha&/let a_.(g' U ba_lve

[19] by using their scattering method. The accuracy is aboufnown that there are st _some stable periodic orbits sur-
107 of the mean level spacing, which is already highrounded by very tiny stability |sland_s up 1?_0=O.2791. At
enough for our purpose. For the billiards whose eigenvalue!@'9erh we have reason and numerical evide{ig@] to ex-

are not available from other methods, we always take thoect that the dynamics can be ergodic. Recently it has been

eigenvalues at very large density of discretizatiosay 3 proven rigorously by Markariaf81] that for A =1/2 (a car-
asgthe true value. yiarg y (5ay 30 dioid billiard) the system is indeed ergodic, mixing, akd

This was further motivation to study the cardioid billiard
classically, semiclassically, and quantitatively by several
groups, e.g., Beker et al. [32] and Bruus and Whelaf83].

As is well known, in the classically integrable quantum The billiard shape fol =0.4 is shown(the upper halfin
Hamiltonian systems in the semiclassical lintgf suffi-  Fig. 1(a). Since all states are either even or odd we can take
ciently small#) the eigenfunction can locally be described into account these symmetry properties explicitly. In fact, we
by afinite superposition of plane waves with the same wavewant to specialize to the odd eigenstates only. Therefore, in
number; in the case of plane billiards it is= VE. If the  order toa priori satisfy the Dirichlet boundary condition on
guantum system has ergodic classical dynamics then in tHéie abscissa of Fig.(& we specialize the general ansé®
semiclassical limit locally the wave function can be repre-to the form

B. Relevance of chaos with the numerical accuracy
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(b) absolute errofmeasured in units of the mean level spagifid\E|)
R (in logarithmic unit3 versus the billiard shape parametefor the

Robnik billiard with a fixed density of boundary discretization
b=12. The numerical points are denoted@ywhich are joined by
0 X a line to guide the eye.

vious that in the semiclassical picture also other classical
dynamical propertieémeasures of the “hardness” of chaos
play an important role. Although we do not have a quantita-
(c) tive theory yet, one should observe that according to Robnik
[26], the Lyapunov exponent and Kolmogorov entroph) (

" vary also quite smoothly with\, suggesting a speculation

that there might be a relation betwe@AE|) andh.
/ Another demonstration of the effectivity of the PWDM
and its accuracy is displayed in Table I, where we show the
numerical value of the scalar product of two consecutive
FIG. 1. Geometry of the boundary of the three desymmetrizedniormalized eigenstates, namely, the ground state and the first

billiards: (a) the Robnik billiard,(b) the Bunimovich stadium(c) excited state, denoted 18y;,, which ideally should be zero.

0 X

and the Sinai billiard. We see here too that the accuracy decredlsgsorders of
magnitude sharply but smoothly with increasing shape pa-
N rametera.
P(r)= 21 a;cog Ky X+ o) sin(ky;y), (4) It is then interesting to similarly analyze an ergodic sys-
=

tem such as the stadium of Bunimovich shown in Fig),1

. ) i where the shape parameteaidk and we have looked at the
where all the quantities are precisely as in B).exceptthat | .quits for G=a/R<10. In fact, for our purposes we have

theN discretization(primary) nodes are equidistantly located chosen and fixedR=1 in all cases. Since this billiard is

only along the half of the full billiard boundary, so thatis known to be ri . o
. ) X gorously ergodi@nd mixing and) for any
exactly the same as in using the ans@for the full bil- a>0 in this casep, is exactly 1 and constant. We have

plot {|AE|) (in logarithmic unit$ versus\ at fixedb=12. _ _
Close to integrability x<0.1) we reach the accuracy within TABLE I. Test of the orthogonallty of 'the eigenstates and the
14-15 digits, which is almost the double precision on ourscalar product of two consecutive r?ormallged wave functiops, .
machine(16 digits, in which all our calculations have been Namely. the ground state and the first excited state, for the Robnik
performed. As the value af increases we observe a dra- billiard at different shape parameters. The number in brackets rep-
matic deterioration of the accuracy whel&E|) increases resents the power of 10.

by many orders of magnitude, namely, by almost 13 decades,

leveling off at(|AE|) approximately equal to I&, which \ O12

means that we have now the accuracy of only a few percent 0 2.-16]
of the mean level spacing. This dramatic but quite smooth 0.1 —-5.0-15]
increase of(|AE|) is certainly related to the emergence of 0.2 7.§-10]
classical chaos with increasing but definitely isnot con- 0.3 48-6]
trolled merely byp, becausep, reaches the value of (al- 0.4 5.5—4]
most ergodicity already at\ = 1/4[10,26], whereas/|AE|) 05 1.5-3]

still varies considerably in the region=1/4. Thus it is ob-
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FIG. 3. Ensemble-average@ver 100 lowest odd-odd eigen-  F|G. 5. Absolute error of eigenstatés logarithmic unit3 ver-

state$ absolute errofmeasured in units of the mean level spa¢ing sus eigenenergy for the lowest 400 odd eigenstates of the Robnik
(in logarithmic unitg versus the billiard shape paramet®iR for pijlliard at A =0.27. The averages over consecutive stret¢be$00

the Bunimovich stadium with a fixed density of boundary discreti- states eadhare given in Table Il, demonstrating t[‘(é;AED is quite
zationb=12. The numerical points are denoted @y which are  stationary.

joined by a line to guide the eye.

reaches the maximum, and then decreases sld&,
whereas ouf|AE|) increases monotonically. Thus, if there
is a relationship betweefjAE|) and Kolmogorov entropy it

N certainly is not a simple one.
‘ﬂ(r):Zl a;jsin(ky;x)sin(ky;y). ©) We have tested also another system with hard chaos,
= namely, the Sinai billiard sketched in Fig(cl (desymme-

Here again the discretizaticprimary) nodes are only on the trized. The system is known to be ergodic, mixing, aRd
outer boundary of the stadium with discretization densityln calculating the 100 lowest energy levels of the desymme-
b=12. From our plot in Fig. 3 we see that in the integrabletrized Sinai billiard we used the same specialized ansatz as in
case of the circled=0) we again reach the accuracy within Eq. (4), thereby taking into account explicitly the Dirichlet
at least 14 digits, but this brilliant accuracy at fixeec12  boundary condition on the abscisga 0. In this casé is the
deteriorates almost discontinuously upon increasaingnd  density of discretization of the equidistant nodes along the
then(|AE]|) still increases by about two orders of magnituderest of the perimeter. Similarly as in the case of the stadium,
whena goes from 0.1 to 10. It appears to us that classicalve easily reach the double precision of 16 digits in the lim-
chaos is definitely relevant for the accuracy of the methoditing integrable case of zero radii&s= 0, but this accuracy is
which might and should be explained by an appropriatealmost instantly lost by increasirg, as seen in Fig. 4. The
theory in the semiclassical level. As an observation weyalue of (|AE|) levels off at about 10*~10 2 for all R
should mention that the Kolmogorov entropy increasegetween 0.025 and 0.45.
sharply witha/R whena/R goes from 0 to about 1, where it As a final technical point we comment on the stationarity
of (|AE|) as a function of energy, which has been confirmed
0 — 1 T T T T T for the Robnik billiard at\ =0.27, where the average value
—e-0-0""0- over consecutive spectral stretches over 100 states has been
found to be quite stable. Specifically, to illustrate this finding
we plot in Fig. 5 the absolute values of the errors of the
lowest 400 consecutive eigenstates where one can see that
the average value over 100 consecutive states is quite stable
indeed. This is shown in Table Il for four intevals of 100
states each. We should emphasize again that the fluctuation

metry class. Therefore, in this case the general arf8atan
be specialized as

o-0-0
._.\./
.,.—.-.—.—.

log, <|AE|>
©

-12
TABLE IlI. Stationarity test of |AE|) for the Robnik billiard at
N=0.27 for the lowest 400 odd eigenstates.

-16 1 1 . 1 . 1 1 1

0.0 0.1 0.2 0.3 0.4 0.5
R Average stretch (JAE])
FIG. 4. Ensemble-averagddver 100 lowest eigenstajeabso- 1-100 1.54-7]
lute error(measured in units of the mean level spagingrsus the 101-200 2.20-7]
billiard parameteR (the radius of inner circlefor the desymme- 201-300 2.7[—7]
trized Sinai billiard with a fixed density of boundary discretization 301-400 2.0B-7]
b=12. The numerical points are denoted@y which are joined by 1-400 2.18—7]

a line to guide the eye.
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is very big. We have calculated the standard deviation for r,
these 400 levels; it isr|yg=7.40<10"7, which has the

same order of magnitude as the average védee Table ).

It is our numerical experience that for all cases the standard
deviations are always about the same order of average val-
ues.

IlIl. BOUNDARY INTEGRAL METHOD

After discussing the PWDM, we now turn to another very
important numerical method: the boundary integral method.
This method is widely used not only in studying quantum
chaos, but also in engineerifd5]. In this section we would
give an extensive numerical investigation of its accuracy in
relation to classical dynamics and geometrical properties.
However, before we go into a detailed numerical and tech-
nical analysis, we would like to point out two serious flaws
in the derivation of the BIM in the literature and show how
the final formula, which nevertheless is correct, should be
derived in a sound way.

FIG. 6. Notation of the angles and chords used in boundary
A. A regularized derivation of the BIM integral method BIM).

In order to clearly expose the difficulties and the errors in 1
the derivation of the BIM offc_ared m_the_ Ilterature,_ e.g., in Gy(r,r')=— —ngl)(k|r—r’|), @
Ref.[5], we present ouregularizedderivation, by which we 4
mean that we construct and use a Green function that auto- 1 - ) ]
matically (by constructioh satisfies the Dirichlet boundary WhereHg" is the zeroth-order Hankel function of the first
condition (vanishes locally on the boundasB of the bil-  kind [37], namely,
liard domainB), which is achieved by employing the method " N ,
of images(see, e.g., the article of Balian and Blo@6] and G(r,r")=Go(r,1") =Go(r:r'r), ®)
the references therginThis will enable us to avoid commit- ¢ ,ch that nowG(r,r’) is zero by construction for any’ on
ting two errors, which, however, luckily compensated forihe poundary s, in contradistinction to the Green’s function
each otherFirst, in taking the normal derivatives on the tWo 4efined and used in E@p) in [5]. Multiplication of Eq. (6)
sides of Eq(6) in [5], on the right-hand side we must use the by #(r) and the Helmholtz equaticfl) by G(r,r’), subtrac-

value ¢(r), which is the interior solution insid&, rather 5 integration over the area insid& and using Green’s
than 34(r), which is the value exactly on the boundary, theorem yields

simply because in taking the derivatives we must evaluate

the function at two infinitesimally separated points normal to

the boundarySecondthis error of taking the unjustified fac- § ds¢(r)n-V,G(r,r")=G(r,r")n-Ve(r)]=(r’),

tor 1/2 is then exactly compensated for by another error in 9)

arriving at Eq.(8) in [5], namely, by interchanging the inte-

gration along the boundary and the normal differentia- Wheres is the arclength on the bounda#y oriented coun-

tion, because due to singularities on the boundary these twirclockwise,n is the unit normal vector té53 atr oriented

operations do not commute. outward, and this equation is now valid fall r’ inside and
Now we offer our regularized derivation. We are search-on the boundary of3. Since in this equation everything is

ing for the solutiony(r) with eigenenergyE=k? obeying regular, we can take the normal partial derivatives on both

the Helmholtz equatiof), with the Dirichlet boundary con-  sides. Following the usual notation if], we define the nor-

dition ¢(r)=0 on the boundary e 9B. We will transform  mal derivative ofys at the points as

this Schralinger equation for our quantum billiai into an

integral equation by means of thegularizedGreen function u(s)=n-Viy(r(s)

G(r,r'), which solves the defining equation

(10)

and thus using the boundary conditigir) =0 we arrive at
VIG(r,r")+k3G(r,r")=8(r—r")=8(r—=r'g), (6
u(s)=-2 jg ds'u(s’)n-V,Gq(r,r’). (11
wherer andr’ are inBU dB andr'g is the mirror image of

r' with respect to the tangent at the closest-lying point on thén this way we have correctly derived the main integral equa-
boundary(and thus ifr’ is sufficiently close to the boundary tion of the boundary integral method, which is correctly
thenr’ is outside the billiard3) (see Fig. 6. The solution given as Eq(8) in [5] (where the two errors exactly com-

can easily be found in terms of the free propagétioe free- pensate for each otheiso that all the further steps in work-
particle Green function on the full Euclidean plane ing out the geometry of Eq11) and the numerical discreti-
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zations are exactly the same ag%h. As shown in Fig. 6, we sion expansions is in progref38] and is expected to deal
define the length of the chord between two points on thesatisfactorily with nonconvex geometries.
boundaryr(s) andr(s’) as In the Sec. Il B we shall analyze the numerical accuracy
of the BIM as a function of the density of discretization
p(s,s")=[r(s)=r(s")| (12)
27N

and the anglé(s’,s) is the angle between the chord and the b=—, (17)

tangent tag5 ats’. The chord is an oriented separation vec- kL

tor pointing fromr(s) to r'=r(s’). Of course 6(s,s’) ) _ - o

# 6(s',s). Thus following the notation of5] we can write in a variety of quantum billiards with integrable, KAM-type,
or ergodic classical dynamics, including such with noncon-

9Gy vex geometry. The main result is that there is always a power
=sinf(s’,s) rry (13)  law so that the error of eigenenergy in units of the mean level
P spacing, after taking the average of the absolute value over a
suitable ensemble of eigenstates, ob@ysE|)=Ab™ ¢, but
the exponent (and the prefactoA) is nonuniversal.

o dGy(r,r")
ar’

and we obtain finally

1
u(s)=— ik f{) ds'u(s’)siné(s,s")H{M{kp(s,s")}. 5. Numerical results
(14 The numerical procedure we have used to solve the vari-
£ of quantum billiards is exactly as described above and
ﬁherefore it is precisely the same as[#]. Our main task
ow is to analyze in detail the behavior of the BIM as a
unction of the density of discretizatidm especially in rela-
tion to the geometrical properties f (nonconvexitiesand
in relation to classical dynamics, whose chaotic behavior is

In numerically solving this integral equation we have use
precisely the same primitive discretization procedure as i
[5], which turned out to be better than some other mor
sophisticated versions. So we simply divide the periméter
into N equally long segments and thus define

Sm=mLIN, p(S|,Sm)=Pim, expected to imply interesting methodological and algorith-
mic manifestation of quantum chaos.
0(s,,5m)= Oy, 1=<I ,m=<N. (15) Again, like in the PWDM, we have to measure the nu-

merical error of the eigenenergies in units of the mean level

Therefore, numerically, we are searching for the zero of thespacing and perform some kind of averaging over a suitable
determinantA(E) =det(M,,), where M,,, are the matrix ensemble of consecutive states. However, this will make
elements of theN X N matrix sense only if such a local average of the error is stationary
(constant over a suitable energy interval. This condition has
been confirmed to be satisfied in almost all cases that we
checked. In the case of the circle billiard and in the case of
the cardioid billiard this stationarity of the locally averaged
whereE=k2. Due to the asymmetr§,,# 6, this matrix is  error is shown in Figs. (&) and 7b), respectively, where we
a general complex non-Hermitian matrix. For the diagonabplot the data for about 95% of the lowest 1000 odd levels.
elementsl =m, where 6, is either zero orm, the proper The average value(|AE|) for these two cases are
limit of the second term on the right-hand side in E§6)  3.89x 10 ° (circle) and 1.9% 102 (cardioid billiard), while
must be taken and then it is equal 4q4s) /27N, where the standard deviationsyg| are 3.6 10" % (circle) and
x(s) is the curvature of the boundary sit 2.91x 10 2 (cardioid billiard, respectively. Again, like in

One important aspect of this formalism is the semiclassithe case of the PWDM, the standard deviation in the BIM is
cal limiting form that has been extensively studied by Boas-of the same order as the average value.
man|[6]. At this point we want to make the following com- We have established that we have always taken the aver-
ment. In the cases of nonconvex geometries we will haveage of the absolute value of the er@n units of the mean
exterior chords connecting two points on the boundary sucHevel spacing over a suitable ensemble of eigenstates, for
that they lie entirely, or at least partially, outsidhe While  which we have chosen the lowest 100 eigenstates in all
formally the method and the procedure in such cases is petases. Actually, strictly speaking, we have taken about
fectly correct, in reality it might be problematic, which can 90—95 levels from the ensemble of the lowest 100 odd lev-
be seen by considering the semiclassical limit. The formakls: Since in using the BIM we always miss some levels, the
leading order in the asymptotic expansion of the Hankeljuota of missing levels typically is a few percent, depending
function H(ll) (Debye approximationdoes not match the ac- on the step size. In our case the step size is 1/20 of the mean
tually correct semiclassical leading approximation thatlevel spacing and the fraction of missing levels varied from
would be spanned by the shortest classical orbit connectingbout 10% in the integrable billiard with Poisson statistics to
the two points via at least one or many collision points inabout 5% in ergodic cases with Gaussian orthogonal en-
between. Therefore, we understand and expect that thgemble statistics.
method must meet some difficulties in cases of nonconvex In Figs. 8a)—8(f) we show the errof| AE|) versusb for
geometry. This has been partially confirmed in our presensix billiard shapes. In Fig. @) we have the full circle bil-
work, as we will show in Sec. Ill B, while the analytical liard. In Fig. §b) we have a 270° £ 3#/2) segment of the
work to reformulate the method including the multiple colli- annulus billiard with inner radiuR;=0.45 and outer radius

ke .
Mim= dim+ msmﬁmH(l '(Kpim), (16)
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FIG. 7. BIM error(measured in units of the mean level spaging fit whosea and coefficien® are given in each box. Ie) we have
of eigenstates versus energy. The error is the difference between tRefull circle billiard, in (b) the 3m/2 segment of a circular annulus
BIM value and the exact value. About 95% of the lowest 1000 oddWith inner and outer radii 0.45 and 0.5, respectively(dnand (d)

states are shown. PI@) is for the full circle billiard andb) for the ~ the Robnik billiard withA=0.15 and1/2, respectively, in(e) the
cardioid billiard (\=1/2). In both caseb is fixed,b=6. 1/4 2x 2 Bunimovich stadium, and iff) the 1/4 Sinai billiard with

radius 1/2 inside a square of size 2.

R,=0.5. These data were based on the very careful work of ) ] o o
Hess[39], who has kindly communicated to us his unpub- Having established the validity of the power 14), it is
lished results and the analysis, which we have independentfyoW most interesting and also immensely CPU time consum-

checked and confirmed. In Figs(cB and §d) we have the Ng (it took almost one month of CPU time on a Convex
Robnik billiard with shape parameteks=0.15 and\ =1/2, C3860 to produce Figs. 9 and 1 look at the variation of

respectively. In Fig. & we show the results for the 1/4 @ with the billiard shape parameter which is shown in Fig.

Bunimovich stadium with the size 22 for the central 9 There is a flat region of almost constaat within
square. In Fig. ) we have the 1/4 Sinai billiard with di- O=A=1/4: It fluctuates slightly around 3.5. At>1/4 the
mensions X2 for the square and circular radil=1/2. nonconvexities of the boundary appear; unlike naive expec-

The best-fitting power-law curve is described by E).and

is seen to provide a very significant fit in all six cases. 6 — T T T T T
As for the Robnik billiard, one should be reminded that at i I 1
A=0 we have integrable classical dynamics in the circle St * .y

billiard and atA =0.15 we have KAM-type dynamics with
islands of stability[16]; it should be emphasized that at
A=1/4 we have a zero curvature pointzat —1 and for all

N>1/4 the shape is nonconvewhile at A\=1/2 we have =
ergodicity and also nonconvex geometry. Technically, in all

cases at various we have calculated all states by applying 2r
the BIM, but then, for technical reasons, compared only the ik 1
odd states with their exact value, which are supplied by the |
conformal mapping diagonalization technigi#10]. 0 N T T

In Figs. §a)—8(f) we thus observe that there is no clear 0.0 0.1 0.2 0.3 0.4 0.5
relationship between the value af and the degree of clas- A

sical chaos in all the various billiards. However, it is an

interesting “experimental” result that the power la@) FIG. 9. Power-law exponent versus the billiard shape param-
seems to be universally valid, with nonuniversal numericakter \ for the Robnik billiard. The error bars denote the standard
value ofa andA. deviation from the best fit.
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-3 — T T T T T T dynamics, namely, integrable, KAM-type, and ergodic sys-
tems. We show the calculated valuescofand also the av-
erage absolute value of the erfgAE|) with fixed value of
b=12. The table clearly demonstrates that the power(Bw
for the BIM is universal, but not the exponeat and the
prefactorA. It also demonstrates that classical dynamics has
little effect on «, whereas the nonconvexities of the bound-
5 *°® ° . ary might be more important. There is no theory foso far
{ I ‘e except for the circle billiard, for which Boasm#@] predicts
a= 3, which might be marginally compatible with our data.
The bizzare behavior af in various dynamical regimes re-
'%0 : 0'1 : 0'2 : 0'3 : 0'4 Yy minds us of the difficulties in theoretical predictions of, e.g.,
‘ ' ‘ ‘ ' ' classical correlation functiong!Q]. In the table we include
A also the results of the integrable case of the rectangular equi-
FIG. 10. Ensemble-averaged absolute BIM efirunits of the Iatgral triangle(half of thg unit squarewhere a=3.28 is )
mean level spacing|AE|) (in logarithmic unit$ with fixed b=12 quite large and the ergodic case of the 1/4 Heller's stadium

against the billiard shape parametefor the Robnik billiard. (2X2 square plus two semicircles with a unit radiis
which casea=3.0 is also quite large.

. : . When thinking about improving the efficiency and the
tation, a now even increases up to a value of slightly lar.geraccuracy of the BIM we have also tried a more sophisticated
than 5 reached ai~0.35 and then starts fo decrease .rap'dlyversion of the BIM, where we have explicitly used a Gauss-
down to the vglue Qf ab'out 2 at=1/2. Therefqre, there is no .ian integration on the boundary when discretizing our main
gi;acrh(;ci)r;elatlon with either the nonconvexities or the Class"equation(ll). However, this experience has been negative

" . . ft ful checks i i billiard d theref
In addition toa in Eq. (3) we would also like to know the aner many caretu Checks in varous bitiards an eretore

. .~ we decided to resort to the primitive discretization of the
vglue pf the constarA .(the prefactorin egch case. This is BIM, which is exactly the same approach ag .
given in Fig. 10 by fixingb=12 and plotting the mean ab-
solute value of the errofaveraged over the lowest 100 odd
state$ versus\. Here we see that the mean ertpAE|) is
almost constant up ta\<0.35 and is equal to about  We believe that our present paper presents quite firm nu-
6x10°°. At A=0.35 we observe the rapid increasing of merical (phenomenologicalevidence for the relevance of
(|AEJ[). Here again we cannot draw a clear conclusion, butlassical chaos for the effectiveness of the PWDM as a quan-
only note that the error starts to increase rapidly in the retal numerical method to solve a quantum billiard, which is
gime where classical chaos becomes “hardfie Kolmog- manifested especially in the semiclassical limit and might
orov entropy increases steepB6)). and should be explained in terms of an appropriate semiclas-
Most of our results are summarized in Table Il for threesical theory. Qualitatively, the reasons for this phenomenon
classes of billiard systems with different type of classicalare explained before. The parametgt the fractional vol-
ume of the chaotic componéal, definitely plays an impor-
TABLE IIl. Power-law exponenia and the average absolute tant role, but is not the only aspect of classical chaos con-
value of the error(|AE|) with b=12 for different billiards. For ~ trolling the behavior of the error(|AE|) at fixed

log, <|AE[>
[ ]

IV. DISCUSSION AND CONCLUSIONS

details of the KAM-type billiards see also Figs. 9 and 10. discretization densitp. Namely, even in rigorously ergodic
systems wherg, = 1, the erro|AE|) might be controlled
Type Quantum billiard a (|AE|)p=12 by the slow diffusion in the classical phase spéadéfusive

ergodic regime, soft chapdf the classical diffusion time is
much longer than the break timgqax (tprea=7A/D, Where

Integrable circle(half) 294+ 017 6.74-5] D is the mean energy level spacjripen the quantal states
circle (full) 344+ 018  5.97-6] will be strongly localized in spite of the formal ergodicity
rectangle-triangle  3.2& 029 4.08-5] (for a demonstration see Ré13] for the Robnik billiard and
segment annulus  2.28 0.24  1.77-3] Refs. [41,47 for the stadium billiardl and therefore they
mimic a certain amount of regularity, enabling a better accu-
KAM Robnik (full) racy of the PWDM, i.e.(|AE|) is smaller than for com-
(0<A<1/4) ~ 3.4 ~5.0-6] pletely extended chaotic high-lying eigenstates where, ac-
Robnik (half) cording to our experience, somehoWAE|) typically
(0<A<1/4) ~ 29 ~ 7.0-5] saturates at about a few percent of the mean level spacing,
even if we drastically increade beyond any reasonable lim-
Ergodic stadium(1/4) 3.00+ 0.16 1.18-4] its. Indeed, as can be seen by a comparison of Figs. 2—4, in
cardioid (full) 210+ 0.13  3.04-4] the case of the stadium this saturation value(|&E|) is
Sinai (1/4) 2.47* 0.05 3.39—3] about 104, which is almost two orders of magnitude smaller
Robnik (full) than in the Sinai billiard(Fig. 4) and the cardioid billiard
(0.3<\<1/2) see Fig. 9 see Fig. 10  (Fig. 2. We think that this is due to the strong localization of

eigenstates in the stadium, which is very well known to dis-
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play an unusual abundance of sc4ii24,29. Thus our chaos but also in engineering problef38] since it would

present work is a motivation for a semiclassical theory tolead to a better efficiency of the BIM, namely, largerMost

explain this aspect of quantum chaos that exhibits some abf our results are summarized in Table Ill, giving the evi-

gorithmic properties of the PWDM in applying it to quantum dence for the above conclusions.

billiards with a variety of classical dynamics. It remains an interesting and important theoretical prob-
Further, we have investigated the behavior of the boundlem to study the sensitivity of the eigenstateienenergies

ary integral method with respect to the density of discretiza2nd wave functionson the boundary data of eigenfunctions,

tion b as defined in Eq(17) (b is the number of numerical of wh|ch_qne aspect is also the dependence qf_the eigenstates

nodes per de Broglie wavelength along the boundaiyce O the bllll_ard shape parameter. If such sensitivity _correlatgs

we expected some relevance of nonconvexities and possibfith classical chaotic dynamics and at the same time mani-

of classical chaos. In all cases we discovered that there is &5t ItSelf in the accuracy of the purely quantal numerical
power-law behavior described in Eq3). We wanted to methods, then such a behavior would be one important mani-

verify whether there is any systematic effect of classical dy-festation of quantum chaos. This interesting line of thought

namics of quantum billiards om andA. The answer is nega- in the search for an_other aspect of quantum chaos has been
tive. On the other hand, we found that the role of nonconve>Iurther deve_loped in another worfd3], Wher? we glso
geometry of the boundary might be more important, aIthougIPresent detailed studies of z_;t_le_vel curvatl_Jre distribution and
no final conclusion is possible at this point. The difficulties other measures of the sensitivity of the eigenstates.

of the BIM might be expected as explained before, and the
easiest way to see that is to consider the semiclassical limit-
ing approximation of the BIM[38]. After explaining two We thank Dr. Holger Schanz and Professor Uzy Smilan-
systematic errors in the literature where the integral BIMsky for the table of the eigenenergies for the Sinai billiard
equation is derived and where luckily the two errors mutu-and Dr. TomazProsen for supplying the eigenenergies for
ally compensate for each other exactly, we have given théhe Robnik billiard. We especially thank Dr. Thomas Hesse
correct(regularized derivation and discussed the BIM for- (University of Ulm) for his results and analysis of the annu-
malism thus derived. We agree that even in nonconvex gdar billiard and for many useful discussions. We also thank
ometries it is formally right, but nevertheless practically Dr. Vladimir Alkalaj, the director of the National Supercom-
might be less efficient, which is expected by considering theputer Center, Slovenia, for kind support. The financial sup-
semiclassical limit mentioned above. Therefore, we suggestport from the Ministry of Science and Technology of the
generalization of the BIM by using a multiple reflecti@ol-  Republic of Slovenia is gratefully acknowledged. This work
lision) expansion in calculating the most appropriate Greerwas supported in part by grants from the Hong Kong Re-
function, which is another subject of our current investiga-search Grants Counc{RGC) and the Hong Kong Baptist
tion [38] and is important not only for studies in quantum University Faculty Research Gra(fRG).
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